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CHAPTER ONE 

INTRODUCTION 

 Methicillin-Resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-

acquired infection, and can lead to extended hospital stays and increased health care costs. 

Patients typically acquire this infection from the hands of hospital workers or their own resident 

flora. MRSA can cause severe problems including bloodstream infections, pneumonia and 

surgical site infections. MRSA is treated with antibiotic therapy and vancomycin is the primary 

antibiotic of choice. In addition, MRSA infections cause many patients to experience prolonged 

or recurrent infections. 

 Physicians are at a disadvantage when treating MRSA infections because the clinical 

outcome if often unpredictable. If the chosen antimicrobial regimen is suboptimal, patients may 

fail to clear their infection completely, resulting in prolonged bacteremia and/or recurrent 

infections with the same organism. If clinical markers could be identified that predicted the 

outcomes of MRSA infections, physicians could identify patients at risk for infection recurrence 

or prolonged MRSA bacteremia. This foreknowledge would allow physicians to modify their 

treatment strategies by using more efficacious therapies including combination therapy with 

multiple antibiotics. With this in mind I asked the question, can I predict the outcomes of MRSA 

infections using clinical markers?  

 The inability to predict MRSA infection outcome is only the first part of the current 

problem. The second problem addressed was the treatment of MRSA infections. Although, 
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vancomycin is the mainstay for treatment of MRSA infections, failures of vancomycin 

monotherapy are common. Current guidelines recommend vancomycin alone for treatment of 

most serious infections. In order to decrease vancomycin failures, physicians will often add an 

additional antibiotic. Combination therapy is used by many Loyola physicians to treat MRSA 

infections; however testing for antibiotic synergy is not performed in Loyola’s clinical 

microbiology laboratory. My second aim was to determine whether the antibiotic combinations 

most commonly used at Loyola, and those suggested in recent publications, demonstrate 

synergy in vitro. I addressed this problem using timed kill-curves. The antibiotics tested were 

chosen based on previous chart reviews that indicated the most commonly used combination 

therapies for MRSA treatment at Loyola, and by review of recent publications. These 

combinations were vancomycin +rifampin, vancomycin +gentamicin, and vancomycin + 

cefazolin.  

 These studies will help to identify clinical markers that can predict MRSA infection 

outcome and confirm which combination therapy is a better method of treatment for MRSA. In 

addition, understanding the synergistic relationships between antibiotics used for treatment, 

and which combinations are most effective against MRSA will help physicians to better treat 

their MRSA patients. 

Hypothesis 

 Through patient chart analysis, clinical markers will be identified that predict outcomes 

of MRSA infections, specifically recurrent infection and prolonged bacteremia. The antibiotic 

combinations commonly used at Loyola University Medical Center (LUMC) will demonstrate 

synergy when tested against six strains of MRSA in vitro.   
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Specific Aims 

Aim 1.  To determine if clinical markers can be identified that predict the outcomes of  

  MRSA infections.  

Rationale.  Physicians are unable to predict the outcomes of MRSA infections, and thus  

  cannot always treat their MRSA patients optimally. Identifying clinical markers  

  associated with recurrent infections would help physicians identify patients at  

  risk for recurrent infections and allow more aggressive treatment. Chart review  

  was a good way to approach this goal because it enabled me to look at a large  

  number of patients and identify differences in demographics (i.e. age, gender),  

  histories (i.e. preexisting conditions), and hospital experiences (i.e. length of  

  stay, treatment method). In addition, it allowed me to collect data from patients 

  both living and deceased, providing information that could predict mortality.  

  This study could give physicians more facts to consider when deciding on  

  treatments for MRSA patients with MRSA infection. In addition, more effective  

  treatments would shorten hospital stays for patients and subsequently lower  

  hospital costs.  

 

Aim 2.   To determine if combination therapies commonly used at LUMC   

  and suggested in publications demonstrate synergistic activity against MRSA.  

Rationale.  Vancomycin is the most frequently used antibiotic for the treatment of MRSA,  

  but is suboptimal for its ability to rapidly kill S. aureus.  In order to improve the  

  efficacy of vancomycin, physicians often add an additional antibiotic.   
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  Combination therapy is used by many Loyola physicians to treat MRSA   

  infections; however testing for antibiotic synergy is not performed in Loyola’s  

  clinical microbiology laboratory to evaluate the efficacy of combination therapy. 

  While studies have been done on the synergy of different antibiotics to treat  

  multiple different infections, the resulting data are contradictory. My chart  

  review has given me insight into the most common combination therapies  

  currently being used at Loyola to treat MRSA. Both the conflicting literature and  

  the differing combinations used by physicians at Loyola and suggested in  

  publications have prompted me to study combination therapies used at Loyola  

  and determine which of these combinations demonstrate synergy.   

  Understanding which combination therapies actually demonstrate synergy in a  

  lab, may ultimately support clinical decisions, but may also identify better  

  therapies for the treatment of MRSA infections. I will use timed kill-curves to  

  test the synergy of vancomycin + gentamicin, vancomycin + rifampin, and  

  vancomycin + cefazolin in vitro against six strains of MRSA. 
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

About Methicillin-Resistant Staphylococcus aureus 

 Staphylococcus aureus (S. aureus) is a leading cause of bacterial human infections. It is a 

global threat that is endemic to both hospitals and communities (8). S. aureus infections 

acquired in health care environments are spread from direct contact with an infected wound, 

the hands of healthcare workers or from contaminated environmental surfaces(6). Many 

patients, however, can acquire S. aureus from their own flora. Studies performed by the CDC 

and independent scientists show that approximately 30% of people asymptomatically carry S. 

aureus in their nose, and 2 in 100 people carry methicillin-resistant Staphylococcus aureus 

(MRSA)  (6, 34). In addition, S. aureus colonization seems to influence the epidemiology and 

pathogenesis of infection. In healthy individuals the rate of carriage can be classified into three 

patterns: persistent, intermittent, and almost never (34). The most common pattern is 

intermittent and 60% of people display this pattern. The remaining 40% are split between 

persistent (20%) and almost never (20%) (34). The presence of S. aureus on the skin and anterior 

nares increases the risk of infection for people undergoing dialysis or surgery (34).  

  Clinical manifestations of S. aureus infection can range from minor skin infections to 

life-threatening bloodstream infections (8). An additional danger of S. aureus is its ability to 

develop resistance to antibiotics. The first drug crisis occurred when S. aureus developed 

resistance to penicillin in the 1950s. To combat this development, pharmaceutical companies 

developed methicillin, a semi-synthetic penicillin resistant to hydrolysis by β-lactamase. 
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Oxacillin and nafcillin, two less toxic semi synthetic penicillins, have replaced methicillin for 

treating penicillin-resistant strains of S. aureus. In the laboratory, oxacillin is used to detect 

methicillin resistant strains. Oxacillin-resistance equates with methicillin-resistance and 

indicates MRSA. In addition, the demographics of MRSA are changing. A recent study found that 

although nasal colonization with S. aureus has decreased in the U.S. population, nasal 

colonization with MRSA has simultaneously increased (17). Also, while MRSA is a major public 

health problem typically associated with health care, it is no longer restricted to health care 

institutions or settings (34), and community-acquired MRSA infection has emerged as an 

increasing concern.  

Treatment of MRSA 

 Vancomycin is the mainstay for treatment of infections caused by MRSA. Current 

guidelines recommend vancomycin monotherapy for treatment of most serious infections, 

including bacteremia and endocarditis (37). Exceptions include prosthetic valve endocarditis and 

in some instances osteomyelitis and CNS infections where combinations of antibiotics are 

suggested (37). However, there is a high rate of failure associated with vancomycin 

monotherapy. A recent study comparing daptomycin and vancomycin effectiveness for treating 

MRSA showed that almost 60% of MRSA patients experienced vancomycin treatment failure 

(42). Daptomycin was associated with a better outcome than vancomycin for the treatment of 

bloodstream infections caused by MRSA with higher vancomycin minimum inhibitory 

concentrations (MIC).  Another study looked at treatment outcomes for MRSA infections with 

reduced vancomycin susceptibility, and reported that 76% of the study patients experienced 

glycopeptide therapy failure (27). The cause of vancomycin failure is currently unknown, but 

some studies have correlated higher vancomycin MICs (≥2) with increased mortality rate and 
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complicated bacteremia (1, 22, 25, 41, 65). However, there are conflicting studies that show that 

higher vancomycin MICs are not related to the outcome of MRSA infections (21, 53). The 

importance of MIC is still under investigation.  

 Regardless of conflicting data, MIC determination remains a prevalent method of 

choosing which therapy to use when treating MRSA infections. Hageman, et al. surveyed over 

400 infectious disease consultants (IDCs) and determined the importance of the vancomycin 

MIC when confronted with a case of persistent MRSA bacteremia. While 54% of IDCs reported 

that they always or usually use the vancomycin MIC to guide therapy for MRSA bacteremia, 29% 

responded with occasionally or never (19). Unfortunately, even with the MIC guideline, 

vancomycin failure is common. This high prevalence has led to multiple studies looking at 

alternative dosing regimens and therapies.  

 Research has focused on the importance of vancomycin trough levels when using 

vancomycin monotherapy. Many experts recommend dosing to achieve a higher trough level of 

15-20mg/L thus optimizing the pharmacokinetics of vancomycin and increasing its absorption 

into the body (35). Achieving these levels is considered particularly important in patients whose 

isolates have vancomycin MIC ≥ 2. In addition, the high dosage of vancomycin needed to obtain 

the desired trough levels may increase the potential for nephrotoxicty and could prove to be 

unsafe (48, 54). One study questioned the need for the 15-20mg/L trough levels, especially 

when the MIC ≤1 mg/L (48).  In response to the toxicity problem investigators are suggesting 

alternate therapies. For example, as a result of one study the author recommended the use of 

an alternate therapy if a patient on vancomycin has not had a clinical or microbiological 

response to vancomycin, even after removal of the foci of the infection, regardless of 

vancomycin MIC (37). Other studies are suggesting new therapies that do not include 
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vancomycin. Another recent publication recommended that daptomycin IV be considered for 

patients with MRSA bacteremia, right-sided endocarditis, and complicated skin and skin 

structure infections (52). Yet, vancomycin remains the most frequently used antibiotic in the 

treatment of MRSA. 

Predicting the Outcomes of MRSA Infections 

 Physicians are at a disadvantage when treating MRSA because they cannot reliably 

predict the outcome of MRSA infections. The high rate of vancomycin failure can lead to 

prolonged and recurrent infections. If physicians had a guideline for identifying patients at risk 

for these complications, they could treat patients more aggressively (60). Few studies have been 

done to predict these risk factors. Han et al focused on whether or not reduced vancomycin 

susceptibility affected the outcomes of S. aureus bacteremia. The study showed that reduced 

vancomycin susceptibility (defined as MIC >1) was associated with greater 30-day in-hospital 

mortality in patients with bacteremia due to MSSA, but not in patients with MRSA. In addition, 

reduced vancomycin susceptibility was associated with a decreased length of stay in hospital 

acquired, but not community acquired, S. aureus bacteremia. Finally, there was no effect on 

total hospital costs accrued after the first positive blood culture date (21). This study was limited 

and only focused on one possible predictor of MRSA infection outcome. Other studies have 

followed similar patterns, focusing on a few markers or specific patient populations. 

 It is known that dialysis patients are at a higher risk for MRSA infections due to frequent 

visits to dialysis units and the need to access the bloodstream. Nguyen et al. aimed to identify 

trends in invasive MRSA infections among dialysis patients over six years. The study found that 

70% of infected dialysis patients from 2009-2011were hospitalized in the year prior to infection, 

and 60.4% of infected hemodialysis patients were dialyzed through a central venous catheter 
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(CVC). Despite these numbers, the overall amount of invasive MRSA infections among dialysis 

patients has decreased, and this is possibly due to increased efforts to control MRSA in hospitals 

and dialysis units (44). While important, this study was narrow because it focused on a specific 

population and markers for infection risk within that population (i.e. prior hospitalization and 

CVC).  Some studies have approached the prediction of MRSA infection outcomes on a broader 

scale.  

 Klevens et al. aimed to describe the incidence and distribution of invasive MRSA 

infections in nine US communities during July 2004 – December 2005.  This was accomplished 

using the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network. The 

study separated MRSA infections into two groups: health-care associated or community 

associated. They found that most MRSA infections were health care associated. In addition, this 

study looked at demographic markers in relation to the incidence of MRSA infection. The results 

showed that incidence rates of invasive MRSA infection, regardless of whether the infection was 

hospital or community associated, were highest among patients 65 years and older, blacks, and 

males (33).  This study is important in that it gives insight into patients at risk for acquiring 

invasive MRSA infections however; it does not determine ways to predict the outcomes of those 

infections.  

 In 2011, Moore et al. conducted a study of the factors involved in the etiology and 

treatment MRSA bloodstream infections in order to characterize patients at risk for vancomycin 

failure. This was a retrospective cohort study of 200 patients collected between July 2005 – 

October 2007, and vancomycin failure was defined as mortality, microbiologic failure and/or 

recurrence within 30 days. The analysis found that vancomycin treatment failure was associated 

with specific comorbidities (i.e. cardiovascular disease, acute renal failure, and 
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immunosuppression), definitive trough levels, the source of infection, and strain type (41). 

Interestingly, success of vancomycin therapy was more likely in patients with a history of 

intravenous drug abuse, and early combined therapy with an aminoglycoside or rifampin. 

Moore’s study did provide physicians with clinical and biological factors to identify MRSA 

patients at risk for vancomycin failure.  

 Poor outcomes of S. aureus infection can range from prolonged bacteremia to mortality. 

Predicting factors that indicate the risk for a specific outcome is valuable, and Khatib et al. 

focused on characterizing patients with persistent S. aureus bacteremia.  The authors defined 

persistence as bacteremia lasting ≥3 days, and found that persistent bacteremia is associated 

with poor outcome of S. aureus infection regardless of the oxacillin susceptibility of the strain 

(31). The results identified endovascular sources of infection, cardiovascular prosthesis, 

metastatic infection, vancomycin treatment, and diabetes as risk factors for persistent S. aureus 

bacteremia. This study is a valuable resource for understanding which patients are at risk for 

persistent bacteremia. 

 In another study focusing on determining risk factors of MRSA relapse, Welsh et al. 

performed a retrospective analysis of patients who had experienced MRSA relapse specifically 

after vancomycin therapy. The study included 113 patients, 12 of whom had recurrent MRSA 

bacteremia.  The recurrent infection was considered a relapse if the subsequent strain was 

determined to be identical to the previous infecting strain using Diversilab typing. The results 

identified the presence of the arg type II and SCCmec type II genes, hVISA and persistent 

bacteremia as being associated with a relapse of MRSA bacteremia (71).  This study helped to 

identify factors associated with relapse after vancomycin treatment of MRSA infection. 
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 These studies all contribute pieces to the puzzle of trying to understand how to predict 

different outcomes of MRSA infections, including recurrence, prolonged infection, and mortality.  

Combination Therapies for the Treatment of MRSA 

 As mentioned previously, one of the difficulties in treating MRSA is the paucity of 

effective antibiotics, and the frequency of vancomycin therapy failure. One possible solution to 

this problem is combination therapy, using two or more antibiotics to attack bacteria using 

multiple mechanisms. Many LUMC physicians have used various combination therapies to 

combat MRSA, but the microbiology laboratory at LUMC does not test these therapies to 

confirm their synergistic relationships. 

 Research reports are not always consistent when reporting which combinations are 

effective against S. aureus. For example, clinical case reports have shown that daptomycin and 

rifampicin in combination can successfully treat MRSA (2, 29), and the addition of linezolid to 

daptomycin and rifampin can further increase the efficacy of the combination (29). In contrast, 

lab studies failed to demonstrate synergy between daptomycin and rifampin in rifampin-

resistant MRSA isolates (30). The conflicting results of these studies indicate that further tests 

are needed to confirm the role of combination therapy with daptomycin and rifampin. 

 Multiple antibiotics are used in various combinations to treat MRSA, such as 

daptomycin, rifampin, linezolid, vancomycin and β-lactams (2, 13, 29). A survey of over 400 IDCs 

revealed that in the case of persistent MRSA bacteremia with vancomycin MIC 2µg/mL, 72% of 

the IDCs would continue vancomycin but add an additional drug, typically rifampin or 

gentamicin (19). While the percentage of IDCs using combination therapy for MRSA with 

vancomycin MIC 4µg/mL reduced to 29%, the combinations remained vancomycin with rifampin 

or gentamicin.  
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 There are multiple methods of synergy testing: disk diffusion, checkerboard, E-test and 

time-kill curves. Two of these methods, checkerboard and time-kill curves, are most commonly 

used. However, these methods do not always produce identical results. For instance the time-

kill method will demonstrate synergy between two antibiotics, whereas use of the checkerboard 

technique will demonstrate antagonism between those same antibiotics (3, 4, 26). In addition, 

the results produced by the time-kill method more accurately predict the action of two 

antibiotics in vivo (4, 7, 14). Due to the frequent use of vancomycin alone and in combination for 

MRSA treatment, I chose to focus on combination therapies involving vancomycin for synergy 

tests. 

Combination of Vancomycin & Gentamicin 

 One of the most commonly used antibiotic combinations used for the treatment of 

MRSA is vancomycin + gentamicin. Multiple studies have found synergy with this combination 

against staphylococcal species. Watanakunakorn et al. used time-kill curves to demonstrate 

enhanced activity of 10ug of vancomycin and 1ug of gentamicin against 7/10 strains of MRSA 

(70). A similar study found synergy in 35 isolates of S. aureus, 29 of which occurred with a 

gentamicin concentration of 5µg/mL (68). Other studies have been done using more realistic 

dosage regimens.  

  Houlihan, et al. looked at the pharmacodynamics of vancomycin used in combination 

against MRSA in an in vitro model of infected fibrin-platelet clots. The results indicated that the 

combination was most active when gentamicin was added to a high dose (2g) of vancomycin 

(26). The average vancomycin dose for a MRSA bacteremia patient at LUMC is approximately 1g, 

though a number of patients are placed on 2g doses. The combination dosage shown to be the 

most active in this study may not be ideal for all patients.  
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 Dosage method (1 mg/kg x3 vs. 5mg/kg x1) was again shown to be important to the 

vancomycin + gentamicin combination in a study by Tsuji et al (62). The results of the study 

showed that three doses of 1 mg/kg of gentamicin did not improve vancomycin activity against 

MRSA (62). However, the addition of a single 5 mg/kg dose of gentamicin to vancomycin 

resulted in noticeable enhancement at 4 hours, and a 99.9% kill at 32 hours against MRSA (62). 

Overall, this study indicates that a single high dose of gentamicin in combination with 

vancomycin may be enough to maximize synergistic activity against MRSA while simultaneously 

reducing toxicity.  

 In contrast to the Tsuji study, Cosgrove et al. demonstrated that an initial low-dose of 

gentamicin as a part of S. aureus bacteremia treatment should not be used routinely due to 

nephrotoxicty.  Among 53 patients treated with vancomycin and low-dose gentamicin, 19% 

experienced renal problems (12).  They recommended against the use of this combination. 

Additional studies also reported the high rate of toxicity associated with this combination (16, 

50). Rehm et al. found that daptomycin was an effective alternative for the vancomycin + 

gentamicin combination for MRSA bacteremia. However, the combination was more successful 

in patients who had not undergone pervious vancomycin therapy (50).  

 Given the likelihood of nephrotoxicty posed by the use of the vancomycin/gentamicin 

combination, and the frequent use of the combination for treatment of MRSA, more work 

should be done to support the use of this combination for MRSA treatment.  

Combination of Vancomycin & Rifampin  

 The most commonly used combination therapy for the treatment of MRSA at LUMC is 

vancomycin + rifampin. This combination has been widely researched, but the data are 

conflicting. There are multiple studies that support the use of this combination for S. aureus 
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treatment (18, 39, 46, 64). Tuazon et al. tested 20 strains of S. aureus for synergy between 

vancomycin and rifampin. Of those 20 strains, 14 showed indifference to the combination, 5 

showed a synergistic effect, and 1 showed an additive effect. This study supported the 

rifampin/vancomycin combination as a possible method of treatment for serious S. aureus 

infections (64).  

 Animal models have also been used to show the value of rifampin and vancomycin used 

in combination. The combination was tested in rabbit models as a method of treating S. aureus 

osteomyelitis, and it sterilized up to 90% of the infected bones in treated animals after 28 days 

of treatment (46). In another study, the combination proved effective in reducing bacterial 

counts in rat models, and was determined to be an effective treatment for a foreign body 

infection due to MRSA (39). However, this study also showed the combination of vancomycin 

and rifampin to be antagonistic against MRSA in vitro using the time-kill method. Studies like the 

one performed by Lucet et al. in which the results of antibiotic combinations are method 

dependent, and in which in vitro results do not correlate with in vivo results are not uncommon 

(39, 49). 

 Bayer et al. looked at the difference between the time-kill and checkerboard method for 

determining synergy of the vancomycin/rifampin combination against MRSA and MSSA. With 

respect to MRSA, the time-kill method showed that 6/26 strains demonstrated antagonism, 

5/26 strains demonstrated synergy, and 15/26 strains demonstrated indifference (4). In 

contrast, the checkerboard method produced antagonistic results for all 26 strains of MRSA. In a 

similar experiment, Varaldo et al. used both time-kill and checkerboard to test the interaction of 

vancomycin and rifampin against MRSA and MSSA. The time-kill method produced 1 of 4 strains 

showing synergy and 3 of 4 showing indifference. The checkerboard method showed synergy for 
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1/10 strains, and indifference for 9/10 strains (66).  Finally, Bayer et al. tested the combination 

for treatment of aortic valve endocarditis caused by MRSA both in vitro and in vivo using synergy 

tests and rabbit models. The time kill method resulted in synergy, but the checkerboard method 

showed antagonism. As seen in other studies, the time-kill was more accurate and no evidence 

of antagonism was observed when the combination was used in rabbit models (3). This 

difference in methodology is well-documented and typically the time-kill method is a more 

accurate predictor of the in vivo activity of the combination (3, 7, 14) with some exceptions (39). 

 Although multiple studies suggest the vancomycin + rifampin combination could be 

used to treat MSSA and MRSA, a comparable amount of studies suggest the opposite, 

demonstrating antagonism or indifference. Hackbarth et al. showed that the addition of 

rifampin to vancomycin markedly reduced the killing rate in S. aureus, discouraging the use of 

this combination (18). In a study comparing the vancomycin + rifampin combination to 

vancomycin monotherapy, 42 patients with MRSA endocarditis received either vancomycin 

monotherapy or the combination (61). The results showed that the combination did not affect 

cure rates, but instead increased the duration of the bacteremia, thus contradicting reports that 

say the combination is effective against MRSA. A study by Watanakunakorn et al. produced 

similar results in vitro using the time-kill method. Antagonism was demonstrated for 43 of 50 

strains of both MSSA (30 total) and MRSA (20 total), and synergy was only seen in one strain 

(69). The study concluded that the combination cannot be accepted as superior to vancomycin 

monotherapy for the treatment of serious S. aureus infections. Indifference was also a common 

result in three other separate studies (63, 67, 75). Walsh et al. evaluated 20 strains of MRSA 

using checkerboard and time-kill. The checkerboard method showed neither synergy nor 
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antagonism for all 20 strains, and the time kill method showed indifference at 6 hours, but 

occasionally showed synergy at 24 and 48 hours (67).  

 To summarize, there is an abundance of research on the vancomycin + rifampin 

combination however, this body of knowledge is contradictory. Multiple studies that used 

different methods of determining synergy showed conflicting results within the study (3, 4, 66, 

67). However, this combination is still used frequently despite the fact that there is little 

scientific evidence that this combination is effective.  

Combination of Vancomycin & Cefazolin 

 The combination of vancomycin and cefazolin is not typically used to treat MRSA 

infections. While there is a large amount of research done on vancomycin combined with 

 β-lactam drugs in general, there is less research on this specific combination for MRSA 

treatment. β-lactams have been used in combination with, or in place of, vancomycin for the 

treatment of MSSA. Multiple cohort studies have reported poor outcomes when vancomycin is 

used to treat MSSA.  The authors have suggested that antistaphylococcal penicillin (i.e. nafcillin) 

or a first-generation cephalosporin (i.e. cefazolin) should be used in place of vancomycin (9, 10, 

32, 40, 56, 59). These studies indicate that nafcillin or cefazolin should be used for the treatment 

of MSSA in place of vancomycin (40). Unfortunately, MRSA is innately resistant to these 

antibiotics, and thus vancomycin is the mainstay of treatment. 

 The value of antistaphylococcal penicillin and cephalosporins for the treatment of MSSA 

is well documented. Although MRSA is resistant to these antibiotics when used alone, it is 

possible that their value could be extended to MRSA treatment if used in combination with 

vancomycin. Climo et al. looked at the combination of vancomycin and oxacillin for the 

treatment of MRSA, and found that the combination was more likely to demonstrate synergism 
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against MRSA strains with higher vancomycin MICs. This same study showed no 

vancomycin/oxacillin synergy against 22 MRSA strains with vancomycin MICs of ≤2 (11). This 

“seesaw effect” was demonstrated in another study by Werth et al., which concluded that 

ceftaroline, consistent with traditional β-lactams such as cefazolin, demonstrates increased 

activity against strains that are less susceptible to vancomycin (72). Another study demonstrated 

the importance of MIC in that vancomycin combined with oxacillin was effective against MRSA, 

but only when the vancomycin and oxacillin concentrations were at sub-MIC levels (13).  These 

studies suggest that MRSA strains with high vancomycin MICs may be effectively treated with a 

combination of vancomycin and a β-lactam. 

 Cefazolin has been suggested as another effective treatment option for MSSA (56, 59, 

72), and thus the vancomycin/cefazolin combination is worth exploring. A study looking at the 

synergistic effects of double or triple combinations of β-lactams and vancomycin showed that 

the vancomycin/cefazolin combination demonstrated synergy for 50% of the MRSA strains 

tested (51). In addition, the addition of imipenem to the vancomycin/cefazolin combination 

demonstrated synergy against 69% (22 isolates) of MRSA strains, and was indifferent with 31% 

(10 isolates) of the MRSA strains (51). However, the vancomycin/cefazolin combination has 

been shown to be synergistic against staphylococcal species without the addition of other β-

lactams (20, 57, 58).  

 Simon et al. demonstrated synergy of vancomycin and cefazolin in 10 strains of S. aureus 

using the checkerboard technique. The level of synergism was determined by fractional 

inhibitory concentration (FIC) index (strong synergism <0.5; weak synergism; ≤0.75; indifference 

1-2; and antagonism >2). Two of 10 strains showed strong synergism with an FIC index 0.5 and 8 

of 10 strains showed weak synergism with an FIC index ≤0.75 (58). Although this study did not 
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include MRSA, the effectiveness of the combination against MSSA is a justification for evaluating 

these two drugs against MRSA. The in vitro pharmacodynamics of vancomycin and cefazolin 

against MRSA were studied by Hagihara et al (20). Time-kill studies demonstrated that 

combination therapy significantly reduced the bacterial concentration of MRSA when compared 

to vancomycin alone after 12 and 72 hours of incubation. In addition to being synergistic against 

S. aureus, the vancomycin/cefazolin combination demonstrated synergy against other 

staphylococcal species, specifically S. epidermidis (57). Siebert et al. used the checkerboard 

method to demonstrate that the combination was synergistic in 39 of 50 cases of methicillin-

resistant S. epidermidis (57). Although not supporting the use of vancomycin + cefazolin against 

MRSA, it is important to show that the combination works against multiple staphylococcal 

species.  

Conclusion 

 MRSA is a severe public health problem, but limited data are available to help physicians 

identify patients at risk for poor infection outcomes. The current published studies have helped 

to establish a guideline for physicians to follow when treating MRSA infections (31, 33, 34, 41, 

44), but more work is needed to expand this guideline and confirm currently suggested risk 

factors. Comparing patients with recurrent infection or prolonged bacteremia to patients with 

neither of these outcomes could provide physicians with additional information about risk 

factors that can identify patients at risk for poor MRSA infection outcomes.  

 The high rate of vancomycin treatment failure for MRSA (27, 42) is a concern and 

multiple studies have suggested alternate therapies for MRSA treatment (35, 36, 48, 52, 54). 

One approach is combination therapy with vancomycin and different antibiotics. However, 

these combinations are typically not tested in hospital labs, and available research is conflicting. 
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The vancomycin/gentamicin combination has demonstrated synergy (68, 70), but multiple 

studies have also shown a high incidence of nephrotoxicity associated with this combination (12, 

50). The studies of the vancomycin/rifampin combination demonstrated that this combination 

can be synergistic (16, 54), antagonistic (10, 11, 18), or indifferent (4, 64, 75). Finally, the 

vancomycin/cefazolin combination has not been as thoroughly studied, but some studies have 

shown synergy against staphylococcal species (20, 57, 58). The disparate results between 

studies and lack of consistent support by clinicians for these combinations indicates that further 

research is needed to understand the value of these antibiotic combinations in MRSA treatment. 
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CHAPTER THREE 

MATERIALS AND METHODS 

Patient Chart Review Data Collection 

 The Sunquest Laboratory Information System (Sunquest information System, Tucson, 

AZ) was used to identify patients with blood cultures positive for S. aureus from January 2010 – 

May 2013. I separated out the MRSA patients from the MSSA patients, and focused on the 

MRSA patients for the remainder of the study. Using the Sunquest positive culture list I was able 

to identify patients with recurrence of the infection and patients with prolonged bacteremia. A 

recurrent infection was defined as a MRSA infection that occurred at least one month after the 

first MRSA infection had cleared. Prolonged bacteremia was defined as having blood cultures 

positive for MRSA for three days or more. In addition to infection outcomes, I was able to find 

the age, sex, and vancomycin MIC for each patient. Once I identified the MRSA patients to be 

included in my study, I used the LUMC EpiCare electronic medical records system (EPIC, Verona, 

WI), to review each patient chart. A total of 163 charts of patients with MRSA bacteremia were 

reviewed.  

 Each chart was searched for multiple clinical and demographic markers that could be 

potential predictors of MRSA infection outcome. The following markers were looked at: name, 

age, gender, source of infection, presence of other infections, initial vancomycin trough level, 

clearance vancomycin trough level, initial vancomycin dose, clearance vancomycin dose, 

absolute neutrophil count (ANC) level, days positive (number of days having positive blood 
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cultures), hospital length of stay, admission to ICU in 48 hours (yes/no), length of stay in ICU, 

mortality within 30 days (yes/no), cause of death (If “yes” to mortality within 30 days), injection 

drug use, co-morbidities (i.e. diabetes or chronic lung disease), long term intravenous access 

(i.e. chemotherapy or hemodialysis), recent hospitalization, and residence in a long-term care 

facility. A “clearance” dose or trough level was defined as the vancomycin dose or level the 

patient was on at the time the blood cultures became negative.  

  Following the chart review I separated the patients three ways; those with recurrent vs. 

those with non-recurrent infection (Table 1a-b) those with blood cultures positive for three or 

more days vs. those with blood cultures positive one to two days (Table 2a-b), and clinical 

response observed based on vancomycin MIC levels, i.e. vancomycin MIC of 2 vs. vancomycin 

MIC of 1 (Table 3a-b). The MIC study included 18 patients, of the 163, previously confirmed to 

have MICs of either 1 by microscan (12 patients), or 2 by both microscan and E-test (bioMérieux, 

Durham, NC) (6 patients). The other two parameters used the 163 patients previously identified 

through Sunquest, from January 1, 2010 – May 15, 2013. These two studies did not look at MIC 

because MICs of 2 or higher that appeared in the patient medical record had not been 

confirmed with E-test. 

Statistical Analyses for Chart Reviews: 

 The two-tailed student T-tests and Fisher Exact tests were used to analyze the data 

collected from the EPIC records. The two-tailed student T-test is used to determine if two sets of 

data are statistically different, and tests the means of the two sets of data. The Fisher exact test 

is typically used when sample sizes are small. With the Fisher Exact test the significance of the 

deviation from the null hypothesis (i.e. the p value) can be calculated exactly rather than relying 

on estimation. The two-tailed student T-tests were used to find significance between the 
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different groups in each parameter. The Fisher exact test was used to determine significance of 

sub-categories of each marker, and markers that were not present in both groups. The Fisher 

exact test was chosen because I had to compare bins, rather than continuous data, as well as 

small numbers, including zeros, when analyzing the sub-categories of a marker.  The MYSTAT 

(Systat Products, San Jose, CA) statistic computer software was used to perform the analyses. 

The results are shown in Tables 1-3. 

Timed Kill-Curves 

 Bacteria Strains: The six isolates used were chosen from 180 S. aureus isolates, collected 

over 3 years by the clinical microbiology laboratory at LUMC and stored in a -80°C freezer. The 

strains chosen for further study were MRSA blood isolates, with MICs of 2 confirmed by both 

Microscan and E-test. Strains with MIC of 2 were used because those strains typically cause 

infections that are more difficult to clear. The six strains are referred to as Strains 1-6.  

 Antibiotics: The antibiotics and concentrations used were vancomycin (10µg/mL), 

gentamicin (5µg/mL), rifampin (1µg/mL), and cefazolin (30µg/mL). All antibiotics were obtained 

from SIGMA-ALDRICH (St. Louis, MO). The combinations used were vancomycin + gentamicin, 

vancomycin + rifampin, and vancomycin + cefazolin. The first two combinations were identified 

through patient chart review as being commonly used at Loyola to treat MRSA infections. The 

third combination was suggested in a recent publication for empiric use before clinicians know 

the methicillin-resistance of a S. aureus strain (39).  The stock solution for vancomycin was made 

by dissolving 100mg of powder into 10mL of sterilized, de-ionized water. The gentamicin stock 

solution was made by dissolving 50mg of powder into 10 mL of sterilized, de-ionized water. The 

rifampin stock solution was made by dissolving 10mg of powder into 5mL of dimethyl sulfoxide 
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(DMSO). The cefazolin stock solution was made by dissolving 100mg of powder into 10 mL of 

sterilized, de-ionized water.  

 Suspension versus log-growth method: Timed kill-curve experiments typically use the 

log-phase growth method, but the stationary method is most commonly used in the clinical 

laboratory. In order to discern if there was a difference between the methods, two kill-curves 

were performed simultaneously using one of the strains and vancomycin. In the suspension 

method, colonies from a blood agar plate were inoculated into saline and adjusted to a turbidity 

equivalent to a 0.5 McFarland Turbidity standard (108cfu/mL). Then 5µL of the 0.5 McFarland 

saline solution were inoculated into 5mL of Mueller-Hinton Broth (MHB) (SIGMA) with or 

without antibiotic to achieve a 105cfu/mL concentration. This method ensured that the bacteria 

were in stationary phase at the time zero time point.  

 In contrast, with the log-phase growth method required that colonies be inoculated into 

MHB, not saline, and adjusted to a 0.5 McFarland Turbidity standard. The MHB was then 

incubated at 37°C for 1.5-2 hours, until the tubes were cloudy indicating the bacteria were in 

log-phase growth. The broth culture was again adjusted to the turbidity equivalent 0.5 

McFarland Turbidity standard using MHB, and 5µL of the bacteria were inoculated into 5mL of 

MHB without or without antibiotic to achieve a 105 cfu/mL starting concentration. The bacteria 

were in log-phase growth at the zero time point.  

 These two methods were tested to observe the difference between the kill-curves of the 

vancomycin only tubes. Since vancomycin works to impair cell wall growth, it is more active 

against organisms in log-phase growth rather than stationary phase. The log-phase growth 

method was used for the remaining experiments due to the noticeable difference in vancomycin 
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kill rate between the two methods (Figure 2). The timed kill-curve method is described in full 

detail in the following section. 

 Kill-Curve Experiments: Each experiment used 4 tubes, each with 5mL of MHB, a 

designated amount of antibiotic, and bacteria. The four tubes were the control tube which 

received no antibiotic, the vancomycin tube, the compliment drug alone (gentamicin, rifampin 

or cefazolin), and the combination tube that contained vancomycin and the compliment drug in 

combination (Figure 1). In each experiment the tubes containing vancomycin received 5µL of the 

stock solution, the tubes containing gentamicin received 5µL of the gentamicin stock solution, 

the tubes containing rifampin received 2.5µL of the rifampin stock solution, and the tubes 

containing cefazolin received 15µL of the cefazolin stock solution. 

 Each frozen bacteria strain was inoculated onto a blood agar plate (trypticase soy agar 

5% sheep blood, BBL Microbiology Systems, Cockeysville, MD) and incubated for 18-24 hours at 

37°C. The strain was then subbed onto a new blood agar plate and incubated for 18-24 hours at 

37°C. On the day of the experiment colonies from the second plate were transferred to MHB 

and adjusted to the turbidity of a 0.5 McFarland standard. The broth solution was incubated at 

37°C for 1.5-2 hours to achieve log-phase growth identified by a cloudy appearance. The broth 

was then diluted with MHB again to adjust the turbidity to the equivalent of a 0.5 McFarland 

standard, and 5µL of the diluted solution was added each tube of the experiment for a 

105cfu/mL starting concentration. This process was repeated for each strain during each 

experiment.  
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 Once the tubes were inoculated with the bacteria and respective antibiotics, 1µL was 

taken from each tube using a 1µL loop and inoculated onto a blood plate that was incubated for 

24 hours at 37°C. This was repeated twice for each tube, resulting in two blood plates per tube. 

This first plating was the 0 time point. The remaining time points, 4, 8, 12, and 24 hours, were 

handled differently for the control tube versus the antibiotic tubes. For the control tube, 10µL 

was taken from the tube and inoculated into 1mL of saline. Then 10 µL was taken from the first 

saline tube and inoculated into another 1mL of saline, resulting in two 100-fold dilutions. Finally, 

1 µL was plated from each saline dilution. Each plate was done in duplicate, resulting in 4 plates 

per time point. In contrast, with the expectation that the antibiotics would decrease the 

bacterial concentration, 1µL and 100µL were plated from each antibiotic tube at the 4, 8, 12, 

and 24 hour time points. Each amount was plated twice, resulting in 4 plates per tube per time 

point. All plates were incubated at 37°C for 24-48 hours. This process was repeated with each 

strain for the vancomycin + gentamicin and vancomycin + rifampin combinations. 

Figure 1. Tube composition for each time-kill experiment. The No Antibiotic (NA) tube served as the control for 
each experiment, and as a growth curve for each strain. Drug X was gentamicin, rifampin, or cefazolin. Each 
experiment used only one of these drugs at a time, and 5µLof gentamicin stock, 2.5µL of rifampin stock, and 15µL of 
cefazolin stock were used to achieve the desired concentrations in each tube. The same concentration of drug used 
in each individual tube was used in the combination tube.   

    NA Vancomycin   Combination   Drug X 

5mL MHB 

5µL bacteria 

5µL V stock & Antibiotic X  

 

5mL MHB 

5µL bacteria 

Antibiotic X 

5mL MHB 

5µL bacteria 

5µL V stock 

5mL MHB 

5µL bacteria 

No antibiotic 
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  There were exceptions to this procedure when a strain was resistant to the compliment 

antibiotic. For example, two strains had MICs indicating rifampin resistance. The procedure for 

the rifampin alone tube changed to accommodate the supposed increasing bacteria 

concentration. The time 0 procedure was not changed. At the 4 hour time point 10µL was 

inoculated into 1mL of saline producing a 100-fold dilution, and 1µL was plated from the saline 

dilution. In addition, 1µL was plated directly from the tube. Each plate was done in duplicate 

resulting in 4 plates. This was repeated at the 8 hour time point, unless the tube was visibly 

cloudy, in which case the same 100-fold dilutions in saline were plated as for the control tube. If 

the tube was not cloudy by the 12-hour time point, the original 1µL and 100µL plates were done 

for the 12 and 24 hour time points. This procedure was followed for every strain in the 

vancomycin + cefazolin experiments, as MRSA is known to be innately resistant to cefazolin.  

 Colonies on each plate were counted after 24-48 hours of incubation. Since each plate 

was done in duplicate to provide technical replicates, the average of the two plates was 

calculated and recorded. Results are shown graphically in Figures 3-20.  The following conditions 

were used for defining synergy, indifference, and antagonism (18, 51). A combination was 

considered synergistic when at least a 2 log10 decline in CFU/mL was achieved at 24 hours by the 

drug combination compared to the most active single drug. Indifference of a combination was 

defined as a <2 log10 change in CFU/mL compared to the individual drugs at 24 hours. A 

combination was considered antagonistic when a 2 log10 increase in CFU/mL was achieved by 

the drug combination compared to both of the drugs individually at 24 hours. 
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CHAPTER FOUR 

EXPERIMENTAL RESULTS 

Patient Chart Analyses 

Recurrent versus Non-Recurrent Analysis 

 A common problem of MRSA infections is the recurrence of these infections. Physicians 

are currently unable to predict which patients are at risk for recurrent infections. I hypothesize 

that a review of patient chats and subsequent analysis will identify clinical markers that predict 

which patients are at risk for recurrent infections. I reviewed the charts of 163 patients (15 

recurrent and 148 non-recurrent) with blood cultures positive for MRSA, and analyzed the 

results with student T-tests and Fisher Exact tests.  

 The results of the analysis in patients with MRSA recurrence are shown in Table 1a-b. 

There is a significant difference between the average age of patients who recur (42±10.23) 

versus patients who do not recur (57±3.07) (p = 0.005). My chart analysis indicates that younger 

patients, ranging from ages 32 – 52, are at higher risk for recurrent MRSA infections. In addition, 

there is a significant difference between the treatments used for recurrent patients compared 

to non-recurrent patients. The results showed that 93% of the recurrent patients were treated 

with vancomycin monotherapy, whereas only 62% of the non-recurrent patients were treated 

with vancomycin monotherapy (p = 0.009). Also, none of the recurrent patients received 

vancomycin combination therapy; where as 30% of the non-recurrent patients were treated 

with combination therapy (p = 0.012). No other markers reached statistical significance.  
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Table 1a. Demographic and Clinical Characteristics in Patients With and Without Recurrent 
MRSA Bacteremia 

Marker Non-Recurrent 
148 Patients 

Recurrent 
15 Patients 

P value  

Age Mean: 57+ 3.08 Mean: 42 + 10.23 0.005 
Gender 67F (45%)  

81 M (55%) 
7 F (47%)   
8 M (53%) 

0.918 

Source of Infection 
Skin/soft tissue  
Device related  
Genitourinary tract-related  
Osteomyelitis  
Lung: pneumonia, bronchitis  
Infection of head and neck   
Infection of any solid organ  
Abscess of abdominal or 
digestive tract  
Unknown, other not specified.  

 
28 (19%) 
50 (33.8%) 
6 (4%) 
4 (2.7%) 
10 (6.8%) 
2 (1%) 
3 (2%) 
1 (0.7%) 
 
44 (30%) 

 
4 (26.7%) 
4 (26.7%) 
0 
0 
1 (6.7%) 
0 
1 (6.7%) 
0 
 
5 (33.2%) 

 
0.497* 
0.775* 
1.000* 
1.000* 
1.000* 
1.000* 
0.323* 
1.000* 
 
0.773* 

Other Infections Y 67 (45%)  
 N 81 (55%) 

Y 6 (40%)   
N 9 (60%) 

0.698 

Initial Vancomycin Trough Mean:13.6 Mean:14.5 0.705 
Clearance Vancomycin Trough Mean:14.5 Mean:15.4 0.914 
Initial Vancomycin Dose Mean: 1,004mg Mean: 1,124mg 0.150 
Clearance Vancomycin Dose Mean: 1,078mg Mean: 1,161mg 0.589 
ANC Level Mean: 12.7 Mean: 17.5  0.112 
Days Positive Mean: 1.7 Mean: 1.6 0.703 
Treatment 
Vancomycin Monotherapy 
Vancomycin in Combination 
No Vancomycin 

 
87 (62%) 
43 (30%) 
11 (8%) 

 
14 (93%) 
0 (0%) 
1 (7%) 

 
0.009* 
0.012* 
1.000* 

Hospital Length of Stay Mean: 20.3 Mean: 43.2 0.159 
Admitted to ICU in 48 hr  Y 29 (20%) 

N 119 (80%) 
Y 1 (7%)  
N 14 (93%) 

0.221 

Length of stay in ICU Mean: 21.2 Mean:211 (1 person) Insufficient 
data 

Mortality 30 Days Y 20 (14%)  
N 128 (86%) 

Y 0 (0%) 
 N 15 (100%) 

0.220* 

Cause of Death 
 

MRSA: 7 (35%)   
Non-MRSA: 13 (65%) 

Not applicable  Insufficient 
data 

* Indicates the p-value was determined using the Fisher Exact Test. All other p-values were 

determined using a two-tailed student T-test. Significance was defined as a p-value ≤0.05, and 
was seen in the analysis of age and treatment type.  
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Table 1b. Demographic and Clinical Characteristics in Patients With and Without Recurrent 
MRSA Bacteremia 

Marker Non-Recurrent 
148 Patients 

Recurrent 
15 Patients 

P value  

Comorbidities 
Hypertension/heart disease 
Diabetes 
Chronic kidney disease 
Liver disease 
Malignancy: (hematologic)  
Other cancers 
Other immunosuppressive 
conditions 
None 
2 comorbidities 
 >2 comorbidities 

 
24 (16.2%) 
10 (6.8%) 
4 (2.8%) 
2 (1.4%) 
3 (2%) 
8 (5.4%) 
6 (4%) 
 
32 (21.6%) 
40 (27%) 
19 (12.8%) 

 
1 (6.7%) 
1 (6.7%) 
1 (6.7%) 
0 
0 
0 
2 (13.3%) 
 
5 (33.2%) 
4 (26.7%) 
1 (6.7%) 

 
0.471* 
1.000* 
0.387* 
1.000* 
1.000* 
1.000* 
0.160* 
 
0.334* 
1.000* 
0.697* 

Long Term Care Facility? Y 18 (12%)  
N 130 (88%) 

 Y 1 (7%)    
N 14 (93%) 

0.530 

Injection Drug Use Y 3 (2%)   
N 145 (98%) 

Y 0 (0%) 
N 15 (100%) 

1.000* 

Recent Hospitalization Y 61 (41%)   
N 7 (59%) 

Y 6 (40%)    
N 9 (60%) 

0.163 

Long Term IV Y 37 (25%)  
N 111(75%) 

Y 3 (20%)    
N 12 (80%) 

0.670 

* Indicates the p-value was determined using the Fisher Exact Test. All other p-values were determined 
using a two-tailed student T-test. Significance was defined as a p-value ≤ 0.05, and was seen in the 
analysis of age and treatment type.  

 These results show that younger patients (32-52) may be at a higher risk for current MRSA 

infections and should be treated more aggressively to avoid this outcome. In addition, treatment with 

vancomycin monotherapy may increase the risk of recurrent infection. Finally, treatment with 

combination therapy may reduce the risk of recurrent infection. Combination therapy should be used in 

place of vancomycin monotherapy, especially in younger patients.  

Prolonged Versus not Prolonged Analysis 

 A complication of MRSA infections is a prolonged infection. Physicians are currently 

unable to predict which patients are at risk for prolonged infections. I hypothesize that a review 

of patient chats and subsequent analysis will identify clinical markers that predict which patients 
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are at risk for prolonged infections. I reviewed the charts of 163 patients (28 prolonged, and 135 

non-prolonged) with blood cultures positive for MRSA, and analyzed the results with student T-

tests and Fisher Exact tests.  

 Comparisons of demographic and clinical characteristics in patients with and without 

prolonged bacteremia are shown in Table 2a-b. There is a significant difference between the  

percentage of device-related infections in patients with prolonged bacteremia (54%) versus not 

prolonged bacteremia (29%) (p = 0.015). Looking just at long term intravenous access (i.e. for 

hemodialysis or chemotherapy) the percentage of patients was 54% in the prolonged 

bacteremia group, while only 19% in the not prolonged bacteremia group had such a device (p > 

0.001).  

Table 2a. Demographic and Clinical Characteristics in Patients With and Without Prolonged 
MRSA Bacteremia 

Marker 1-2 Days Positive 
135 Patients 

3+ Days Positive              
28 Patients 

p-value 

Age Mean:53.9 + 3.47 Mean:59 + 8.25 0.237 
Gender 74 M (55%) 

 61F (45%) 
15 M (54%)     
13 F (46%) 

0.905 

Source of Infection 
Skin/soft tissue  
Device related  
Genitourinary tract-related  
Osteomyelitis  
Lung: pneumonia, bronchitis  
Infection of head and neck   
Infection of any solid organ  
Abscess of abdominal/digestive tract  

Unknown, other not specified 

 
27 (20%) 
39 (29%)  
6 (4%)   
4 (3%)  
10 (7%)  
1 (1%)  
4(3%)  
1 (1%) 
43 (32%)  

 
5 (18%) 
15 (54%) 
0 
0 
1 (3.5%) 
1 (3.5%) 
0 
0 
6 (21%) 

 
1.000* 
0.015* 
0.591* 
1.000* 
0.691* 
0.315* 
1.000* 
1.000* 
0.366* 

Other Infections  74 N (55%)     
 61 Y (45%) 

16 N (57%)    
12 Y (43%) 

0.823 

Initial Vancomycin Trough Mean: 13.8 Mean: 13.4 0.826 
Clearance Vancomycin Trough Mean: 16.2 Mean: 16.3 0.975 
* Indicates the p-value was determined using the Fisher Exact Test. All other p-values were determined 
using a two-tailed student T-test. Significance was defined as a p-value ≤0.05, and was seen in the analysis 
of source of infection, overall treatment type, and presence of a long-term IV. 
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Table 2b. Demographic and Clinical Characteristics in Patients With and Without Prolonged 
MRSA Bacteremia 

Marker 1-2 Days Positive 
135 Patients 

3+ Days Positive              
28 Patients 

p-value 

Initial Vancomycin Dose Mean: 1,006mg Mean: 1,063mg 0.392 
Clearance Vancomycin Dose Mean: 1,107mg Mean: 980mg 0.372 
ANC Level Mean: 12.1 Mean:16.3 0.052 
Recurrent Y 13 (10%)   

 N 122 (90%) 
Y 2 (7%)     
N 26 (93%) 

0.681 

Treatment 
Vancomycin Monotherapy 
Vancomycin in Combination 
No Vancomycin 

 
87 (68%) 
33 (26%) 
8 (6%) 

 
14 (50%) 
10 (36%) 
4 (14%) 

 
0.083* 
0.350* 
0.099* 

Hospital Length of Stay Mean: 22.9 days Mean: 19.6 days 0.387 
Admitted to ICU in 48 Hours Y 24 (18%)    

 N 111 (82%) 
Y 6 (21%)     
N 22 (79%) 

0.652 

Length of stay in ICU Mean: 29.6 Mean: 21.3  0.492 
Mortality 30 Days Y 14 (10%)     

N 121 (90%) 
Y 6 (21%)   
 N 22 (79%) 

0.193 

Cause of Death 
 

MRSA:  4 (29%) 
Non-MRSA: 10 (71%) 

3 MRSA, 
 3 non-MRSA 

0.384 

Long Term Care Facility?  Y 15 (11%)    
N 120 (89%) 

Y 4 (14%)    
N 24 (86%) 

0.636 

Injection Drug Use Y 3 (2%)     
N 132 (98%) 

Y (0%)      
 N 28 (100%) 

1.000* 

Recent Hospitalization Y 56 (41%)    
N 79 (59%) 

Y 14 (50%)    
 N 14 (50%)   

 0.410 

Long Term IV Y 25 (19%)   
N 110 (81%) 

Y 15 (54%)    
 N 13 (46%) 

<0.001 
 

Comorbidities 
Hypertension/heart disease 
Diabetes 
Chronic kidney disease 
Liver disease 
Malignancy: (hematologic)  
Other cancers 
Other immunosuppressive 
conditions 
None 
2 comorbidities 
 >2 comorbidities 

 
22 (16.3%) 
9 (7%) 
4 (3%) 
2 (1.5%) 
3 (2.2%) 
7 (5%) 
7 (5%) 
 
32 (24%) 
34 (25%) 
15 (11%) 

 
3 (10.7%) 
2 (7%) 
1 (3.6%) 
0 
0 
1 (3.6%) 
1 (3.6%) 
 
5 (17.9%) 
10 (35.7%) 
5 (17.9%) 

 
0.574* 
1.000* 
1.000* 
1.000* 
1.000* 
1.000* 
1.000* 
 
0.624* 
0.252* 
0.344* 

* Indicates the p-value was determined using the Fisher Exact Test. All other p-values were determined 
using a two-tailed student T-test. Significance was defined as a p-value ≤0.05, and was seen in the analysis 
of source of infection, overall treatment type, and presence of a long-term IV. 
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 These results show that having a device-related infection may increase the risk of 

prolonged bacteremia. In addition, the presence of a long-term intravenous access (such as for 

hemodialysis or chemotherapy) may also increase the risk of prolonged bacteremia. Patients 

with these infection source types could be treated more aggressively, as well as patients 

undergoing hemodialysis or chemotherapy. 

Vancomycin MIC 1 versus Vancomycin MIC 2 Analysis 

 Multiple studies have been done to determine the influence of vancomycin MIC on the 

outcomes of MRSA infections, particularly the mortality of MRSA infections. I hypothesize that a 

review of patient chats and subsequent analysis will show that the vancomycin MIC influences 

infection outcome. I reviewed the charts of 18 patients (6 MIC 2 and 12 MIC 1) with blood 

cultures positive for MRSA, and analyzed the results with student T-tests and Fisher Exact tests.  

 The comparisons of the demographic and clinical characteristics in patients infected 

with MRSA strains having vancomycin MIC of 1 or 2 are shown in Table 3a-b. The only 

characteristic which reached statistical significance in this comparison was the presence of two 

comorbidities. Patients with MRSA strains having vancomycin MICs of 2 were more likely to 

have two comorbidities (66.6%) had two comorbidities than patients with MRSA strains having 

vancomycin MICs of 1 (9%) (p =0.022). None of the other markers reached significance. 
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Table 3a. Demographic and Clinical Characteristics in Patients Infected With MRSA Strains 
Having Vancomycin MIC of 1 or 2  

Marker MIC 1 
12 Patients 

MIC 2 
6 Patients 

p-value 

Age Mean: 56 + 13.79 Mean: 64.8 + 10.87 0.430 
Gender 7 F (58%)     5 M (42%) 4 F (67%)   2 M (33%) 0.751 
Source of Infection 
Skin/soft tissue  
Device related  
Genitourinary tract-related  
Osteomyelitis  
Lung: pneumonia, bronchitis  
Infection of head and neck   
Infection of any solid organ  
Abscess of abdominal or 
digestive tract  
Unknown, other not specified.  

 
3 (25%) 
5 (42%) 
0 (0%) 
1 (8%) 
0 (0%) 
0 (0%) 
1 (8%) 
0 (0%) 
 
2 (17%) 

 
1 (17%) 
3 (50%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
 
2 (33%) 

 
1.000* 
1.000* 
N/A 
1.000* 
N/A 
N/A 
1.000* 
N/A 
 
0.569* 

Other Infections 5 Y (42%)      
7 N (58%) 

2 Y (33%)      
4 N (67%) 

0.751 

Initial Vancomycin Trough Mean:  14.3 Mean: 12.6 0.590 
Clearance Vancomycin Trough Mean: 17.9 Mean: 12.9 0.445 
Initial Vancomycin Dose Mean: 1000mg Mean: 875mg 0.241 
Clearance Vancomycin Dose Mean: 979mg Mean: 875mg 0.447 
ANC Level Mean: 10.5 Mean: 6.9 0.337 
Days Positive Mean: 2.1 Mean: 1.5 0.462 
Marker MIC 1 

12 Patients 
MIC 2 
6 Patients 

p-value 

Treatment 
Vancomycin Monotherapy 
Vancomycin in Combination 
No Vancomycin 

 
9 (75%) 
3 (25%) 
0 (0%) 

 
3 (60%) 
1 (20%) 
1 (20%) 

 
0.600* 
1.000* 
0.294* 

Hospital Length of Stay Mean: 13 days Mean: 14.7 days 0.718 
Admitted to ICU in 48 Hours Y 2 (17%)       

N 10 (83%) 
Y 2 (33%)      
N 4 (67%) 

0.453 

Length of stay in ICU Mean: 20 days Mean: 3.5 days 0.061 
Mortality 30 Days Y 1 (8%)       

N 11 (92%) 
Y 1 (17%)       
N 5 (83%) 

0.621 

Cause of Death MRSA: 1        
Non-MRSA: 0 

MRSA: 0      
Non-MRSA: 1 

1.000* 

Recurrence Y: 1 (8%) 
N: 11 (92%) 

Y: 1 (20%) 
N: 5 (80%) 

0.621 

* Indicates the p-value was determined using the Fisher Exact Test. All other p-values were determined 
using a two-tailed student T-test. Significance was defined as a p value ≤ 0.05. Significance was only seen 
in the 2 comorbidities, sub category of the comorbidities marker.  
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Table 3b. Demographic and Clinical Characteristics in Patients Infected With MRSA Strains 
Having Vancomycin MIC of 1 or 2 

Marker MIC 1 
12 Patients 

MIC 2 
6 Patients 

p-value 

Long Term Care Facility? Y 3 (25%)       
N 9 (75%)  

Y 0 (0%)         
N 6 (100%) 

0.515* 

Comorbidities 
Hypertension/heart disease 
Diabetes 
Chronic kidney disease 
Liver disease 
Malignancy: (hematologic)  
Other cancers 
Other immunosuppressive 
conditions 
None 
2 comorbidities 
 >2 comorbidities 

 
3 (25%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
 
4 (33%) 
1 (9%) 
4 (33%) 

 
1 (16.7%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
 
1 (16.7%) 
4 (66.6%) 
0 (0%) 

 
1.000* 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
 
0.615* 
0.022* 
0.245* 

Injection Drug Use Y 0 (0%)        
N 12 (100%) 

 Y 0 (0%)          
N 6 (100%) 

N/A 

Recent Hospitalization Y 5 (42%)        
N 7 (58%) 

Y 1 (17%)        
 N 5 (83%) 

0.317 

Long Term Intravenous Access Y 2 (17%) 
N 10 (83%) 

Y 2(33%) 
N 4 (67%) 

0.453 

* Indicates the p-value was determined using the Fisher Exact Test. All other p-values were 

determined using a two-tailed student T-test. Significance was defined as a p value ≤ 0.05. 
Significance was only seen in the 2 comorbidities, sub category of the comorbidities marker.  

 These results show that vancomycin MIC is not related to MRSA outcome. In addition, 

patients with two comorbidities may be more likely to be infected with a MRSA strain having a 

vancomycin MIC of 2.  

Timed Kill-Curves 

Suspension vs. Log-Growth Methods 

 The purpose of this experiment was to address whether or not the method of bacterial 

preparation influenced the killing activity of vancomycin alone in a timed kill-curve experiment. 

Since vancomycin works to impair cell wall growth, it is more active when the bacteria are in log-

phase growth compared to stationary phase. Timed kill-curve experiment protocols typically call 
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for the log-phase growth method. However, the stationary method is most commonly used for 

bacterial preparation in the clinical laboratory because it is a better predictor of what is 

happening in the patient.  

 In order to discern if there was a difference between the methods, two kill-curves were 

performed simultaneously using Strain 2 and vancomycin. The simultaneous experiments 

ensured the experimental conditions were the same. For example, the time it took to take 

samples at each time point was consistent between the two experiments. Using the same strain 

and taking colonies for each experiment from the same culture plate minimized bacterial 

variability between the experiments. The results of the simultaneous experiments, seen in 

Figure 2, show that there is a difference in the vancomycin activity between the two methods.   

 
Figure 2. Comparison of the Suspension and Log Growth Vancomycin and Growth Curves.  The No 

Antibiotic (NA) curves are the control of each experiment. The two NA curves indicate the consistent 

growth curve of the strain used in the two experiments. The two vancomycin curves indicate that 

vancomycin was more active when the bacteria were in log-phase growth at time zero, than when the 

bacteria were in stationary phase at time zero. Note: Log-growth (LG) and Suspension (S).    
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 These experiments, done in parallel, showed that the activity of vancomycin was 

affected by the method used to prepare the bacteria for the experiment. The vancomycin curve 

in the log-growth method showed a more rapid decline in bacterial concentration with complete 

killing at 24 hours in comparison to the slow decline of the vancomycin curve with the 

suspension method. These results indicated that the log-growth method of bacteria preparation 

resulted in a better resolution in 24 hours, and thus the log-phase growth method was used for 

the remainder of the time kill experiments.  

Kill Curves: Antibiotic Combinations 

 The vancomycin/gentamicin and vancomycin/rifampin combinations were chosen after 

they were shown to be two of the most common combination therapies used for the treatment 

of MRSA at LUMC. This was determined using the chart review in Aim 1. The 

vancomycin/cefazolin combination was chosen due to recent publications mentioned earlier, 

that suggested the use of this combination to treat S. aureus bacteremia. The experiments were 

done to address the question of whether or not the antibiotics demonstrated synergy in vitro. In 

vitro synergy was a traditional standard used to support the use of a combination in the clinic.  

 The timed-kill curve technique using the log-phase growth method of bacterial 

preparation was used to determine the synergy of vancomycin and gentamicin in combination 

against MRSA strains having vancomycin MICs of 2. The MICs of strain for each drug are shown 

in Table 4. The timed-kill curve technique allowed for observation of the killing activity of both 

drugs individually compared to the combination over 24 hours. The data obtained from these 

experiments demonstrated the effectiveness of the combination.  
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Table 4. Antibiotic MICs for Strains 1-6 

 Vancomycin MIC Gentamicin MIC Rifampin MIC Cefazolin MIC 

Strain 1 2 <= 1 <= 1 > 16 

Strain 2 2 4 > 2 > 16 

Strain 3 2 >8 <= 1 > 16 

Strain 4 2 <= 1 <= 1 <= 4 

Strain 5 2 <= 1 > 2 > 16 

Strain 6 2 <= 1 <= 1 <= 4 

Note: MRSA is typically innately resistant to cefazolin, but strains 4 and 6 demonstrate an intermediate 
MIC. The CLSI recently lowered the susceptibility break point to 2, and 4 is now considered intermediate. 
Note: Strain 3 is resistant to gentamicin and strain 5 is resistant to rifampin.  

Vancomycin + Gentamicin 

 

Figure 3. Results of the Strain 1 Vancomycin + Gentamicin Combination Kill-Curve Experiment. The 
vancomycin + gentamicin combination showed the same activity as gentamicin alone, but was more 
active than the vancomycin alone. Antibiotic synergy was not demonstrated.   

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

100000000 

1E+09 

1E+10 

0 4 8 12 24 

B
ac

te
ri

al
 C

o
n

ce
tr

at
io

n
 

Time Point (Hours) 

Strain 1 Vancomycin/Gentamicin 
Combination 

NA 

Vancomycin 
MIC 2 
Gentamicin 
MIC <=1 
Vanc/Gent 



www.manaraa.com

   38 

 
 

 

Figure 4. Results of the Strain 2 Vancomycin + Gentamicin Combination Kill-Curve Experiment. The 
vancomycin + gentamicin combination showed the same activity as both antibiotics individually. Antibiotic 
synergy was not demonstrated.   

 

 

Figure 5. Results of the Strain 3 Vancomycin + Gentamicin Combination Kill-Curve Experiment. The 
strain was resistant to gentamicin, indicated by the MIC > 8. The vancomycin + gentamicin combination 
showed the same activity as vancomycin. Antibiotic synergy was not demonstrated. 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

100000000 

1E+09 

1E+10 

0 4 8 12 24 

B
ac

te
ri

al
 C

o
n

ce
n

tr
at

io
n

 

Time Points (Hours) 

Strain 2 Vancomycin/Gentamicin 
Combination 

NA 

Vancomycin 
MIC 2 
Gentamicin 
MIC 4 
Vanc/Gent 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

100000000 

1E+09 

1E+10 

0 4 8 12 24 

B
ac

te
ri

a 
C

o
n

ce
n

tr
at

io
n

 

Time Points (Hours) 

Strain 3 Vancomycin/Gentamicin 
Combination 

NA 

Vancomycin 
MIC 2 
Gentamicin 
MIC > 8 
Vanc/Gent 



www.manaraa.com

   39 

 
 

 

Figure 6. Results of the Strain 4 Vancomycin + Gentamicin Combination Kill-Curve Experiment. The 
vancomycin + gentamicin combination showed increased killing activity compared to both drugs 
individually. Antibiotic synergy was not demonstrated. 

 

 

Figure 7. Results of the Strain 5 Vancomycin + Gentamicin Combination Kill-Curve Experiment. The 
vancomycin + gentamicin combination showed similar activity as gentamicin alone, but was more active 
than the vancomycin alone. Antibiotic synergy was not demonstrated.   
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Figure 8. Results of the Strain 6 Vancomycin + Gentamicin Combination Kill-Curve Experiment. The 
vancomycin + gentamicin combination showed similar activity as vancomycin alone. Gentamicin was more 
active than both vancomycin alone and the combination. Antibiotic synergy was not demonstrated.   

 The results of the timed kill-curve experiments for the vancomycin + gentamicin 

combination showed an indifferent relationship (neither synergy nor antagonism was 

demonstrated) for each strain tested.  Although synergy was never demonstrated, the in vitro 

killing of the combination was more active than vancomycin alone for three of the strains (1, 4, 

and 5). These results support the use of the vancomycin + gentamicin combination for the 

treatment of MRSA. However, the toxicity associated with this combination should not be 

overlooked. 

 Most of the strains showed that gentamicin alone demonstrated better or similar killing 

activity to the combination. Strain 3 demonstrated gentamicin resistance, and the combination 

curve paralleled the vancomycin alone curve indicating gentamicin was not active in the 

combination. It is possible that gentamicin alone could be an effective therapy for MRSA; 

however this method of treatment has not been tested. This is most likely because of the 
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toxicity associated with gentamicin, and the fact that it is typically used against gram (-) 

bacteria. In addition, there are less toxic antibiotics that can be used for gram (+) bacteria 

including S. aureus.  

 

 Vancomycin + Rifampin   

 

Figure 9. Results of the Strain 1 Vancomycin + Rifampin Combination Kill-Curve Experiment. The 
vancomycin + rifampin was antagonistic showing a 2 log10 decrease in killing activity compared to both 
antibiotics alone.  
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Figure 10. Results of the Strain 2 Vancomycin + Rifampin Combination Kill-Curve Experiment. The vancomycin + 
rifampin combination showed the same activity as rifampin alone. The combination was more active than vancomycin 
alone. Antibiotic synergy was not observed.  

 

 

Figure 11. Results of the Strain 3 Vancomycin + Rifampin Combination Kill-Curve Experiment. The 
vancomycin + rifampin combination showed worse killing activity than both dugs individually, but it did 
not reach antagonism. The rifampin alone showed better activity than vancomycin alone and the 
combination. Antibiotic synergy was not demonstrated. 

 

1 

100 

10000 

1000000 

100000000 

1E+10 

0 4 8 12 24 

B
ac

te
ri

al
 C

o
n

ce
n

tr
at

io
n

 

Time Points (Hours) 

Strain 2 Vancomycin/Rifampin 
Combination 

NA 

Vancomycin 
MIC 2 
Rifampin 
MIC > 2 
Vanc/Rif 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

100000000 

1E+09 

1E+10 

0 4 8 12 24 

B
ac

te
ri

a 
C

o
n

ce
n

tr
at

io
n

 

Time Points (Hours) 

Strain 3 Vancomycin/Rifampicin 
Combination 

NA 

Vancomycin 
MIC 2 
Rifampin 
MIC <=1 
Vanc/Rif 



www.manaraa.com

   43 

 
 

 

Figure 12. Results of the Strain 4 Vancomycin + Rifampin Combination Kill-Curve Experiment. The 
vancomycin + rifampin combination showed slightly worse killing activity than both dugs individually by 
24 hours, but it did not reach antagonism. The rifampin alone showed activity similar to vancomycin alone 
and the combination. Antibiotic synergy was not demonstrated. 

 

 

Figure 13. Results of the Strain 5 Vancomycin + Rifampin Combination Kill-Curve Experiment. The strain was 
resistant to rifampin, as shown by the rifampin alone curve. The vancomycin + rifampin combination showed slightly 
worse killing activity than vancomycin alone, but it did not reach antagonism. Antibiotic synergy was not 
demonstrated. 
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Figure 14. Results of the Strain 6 Vancomycin + Rifampin Combination Kill-Curve Experiment. The 
vancomycin + rifampin combination showed similar activity to vancomycin and rifampin alone. Antibiotic 
synergy was not demonstrated. 

 The results of the timed kill-curve experiments for the vancomycin + rifampin 

combination showed an indifferent relationship (neither synergy nor antagonism was 

demonstrated) for four of the strains tested and an antagonistic relationship with one strain. 

Only one strain showed the combination to be more effective than vancomycin alone, but 

synergy was not demonstrated. Although only one strain reached antagonism, the in vitro killing 

of the combination was worse than both antibiotics alone in four strains. These results do not 

support the use of the vancomycin + rifampin combination for the treatment of MRSA.  
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Vancomycin + Cefazolin 

 

Figure 15. Results of the Strain 1 Vancomycin + Cefazolin Combination Kill-Curve Experiment. The strain 
was resistant to cefazolin as shown by the cefazolin curve. The vancomycin + cefazolin combination 
showed similar killing activity to vancomycin alone. Antibiotic synergy was not demonstrated. 

 

 

Figure 16. Results of the Strain 2 Vancomycin + Cefazolin Combination Kill-Curve Experiment. The strain was 
resistant to cefazolin as shown by the cefazolin curve. The vancomycin + cefazolin combination showed similar killing 
activity to vancomycin alone. Antibiotic synergy was not demonstrated. 
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Figure 17. Results of the Strain 3 Vancomycin + Cefazolin Combination Kill-Curve Experiment. The strain 
was resistant to cefazolin as shown by the cefazolin curve. The vancomycin + cefazolin combination 
showed similar killing activity to vancomycin alone. Antibiotic synergy was not demonstrated. 

 

 

Figure 18. Results of the Strain 4 Vancomycin + Cefazolin Combination Kill-Curve Experiment. The strain 
was resistant to cefazolin as shown by the cefazolin MIC. The 30µg/mL concentration could have 
overwhelmed the bacteria, causing a delay in the resistance seen in the cefazolin curve. The vancomycin + 
cefazolin combination showed similar killing activity to vancomycin alone. Antibiotic synergy was not 
demonstrated. 
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Figure 19. Results of the Strain 5 Vancomycin + Cefazolin Combination Kill-Curve Experiment. The strain 
was resistant to cefazolin as shown by the cefazolin curve. The vancomycin + cefazolin combination 
showed similar killing activity to vancomycin alone. Antibiotic synergy was not demonstrated. 

 

 

Figure 20. Results of the Strain 6 Vancomycin + Cefazolin Combination Kill-Curve Experiment. The strain 
was considered resistant to cefazolin by Microscan, but it did not act resistant. The vancomycin + 
cefazolin combination showed similar killing activity to vancomycin alone. Antibiotic synergy was not 
demonstrated. 
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 The results of the timed kill-curve experiments for the vancomycin + cefazolin 

combination showed that the combination paralleled the in vitro killing activity of vancomycin 

alone. These results indicate that the cefazolin did not play a role in the combination, and only 

the vancomycin was active against the bacteria.  This was seen with all of the strains, even when 

the strain had an intermediate MIC of <= 4. All six strains demonstrated indifference. Neither 

antibiotic synergy nor antagonism was achieved. These results do not support the use of the 

vancomycin + cefazolin combination for the treatment of MRSA.  
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CHAPTER FIVE 

DISCUSSION 

 MRSA is an important public health concern, and MRSA infections are no longer limited 

to health care institutions (34). This study was unique in that it aimed to identify predictors of 

both recurrent and prolonged bacteremia as individual outcomes of MRSA, instead of combining 

them into a general category of vancomycin treatment failure (21, 32, 38, 41). Few studies have 

done this type of analysis and those that have focused on either one outcome or the other (10, 

15, 24, 31, 43, 47, 71, 74). One recent study by Wong et al. examined organism characteristics of 

MRSA isolates from patients with persistent or recurrent bacteremia but did not look at clinical 

predictors for recurrent or prolonged bacteremia (73). In the present study, I examined patient 

records and laboratory data, to determine if clinical or microbiologic characteristics could be 

identified that would predict patient populations at increased risk for prolonged or recurrent 

MRSA bacteremia. I used the same patient population to determine risk factors for both 

outcomes. In addition, I tested combinations antibiotics commonly used at LUMC for treating 

MRSA bacteremia to determine the in vitro effects of combination therapy on select MRSA 

isolates recovered from patients with bacteremia.  

 My first aim was to determine if clinical or microbiologic markers could be identified 

that predict less favorable outcomes of MRSA infections. These outcomes were defined as 

recurrent infection or prolonged bacteremia (≥3 days of positive blood cultures).  To answer this 

question I performed a retrospective analysis of 163 patients to determine if there were any 

demographic or clinical factors that could predict patients at a greater risk for having for having 
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recurrent or prolonged bacteremia. In addition, I evaluated the vancomycin susceptibility of 

MRSA isolates to determine if vancomycin MIC 1 vs. MIC 2 could be used to predict patients at 

risk for negative infection outcomes.  

 My chart review indicated that 9.2% of patients experienced recurrent infection. The 

current study did not differentiate between relapse and reinfection when defining recurrence, 

and both sub-classifications are included in the recurrent category. I found that the younger 

patients (32-52) are more likely to experience recurrent infections (p=0.005). The average age of 

recurrent patients was 42 ± 10.23 years, and the average age of non-recurrent patients was 57 ± 

3.07 years (Table 1a-b). These results were not expected. One would have expected older age to 

be associated with recurrent infection given the weaker immune system and increased amount 

of comorbidities seen in older patients.  A study of S. aureus bacteremia done by Hill et al. 

indicated that age greater than 60 was a risk factor for a poor outcome (defined as 30-day 

mortality) (24). In addition, Klevens et al. reported that the incidence of invasive MRSA 

infections was highest among persons 65 years and older (33). However, neither study 

associated age with the likelihood of recurrent infections. I did find that patients who did not 

have recurrent infections were more likely to be between 54-60 years old, and 20% of patients 

in this group experienced 30-day mortality, which is similar to the age identified to put people at 

risk for MRSA infections and 30-day mortality (24, 33).  

  One theory possibly explaining a younger age being associated with recurrence is that 

many activities identified as predisposing people to community-associated MRSA infections are 

more likely to have younger participants, especially in the 32-52 age range. Some of these 

activities include contact sports such as wrestling, fencing and football, and military recruitment 

(5, 6, 23, 45, 55). These activities provide ample opportunities for people to be in close contact 
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with not only one another, but also with mats, masks, towels, and other surfaces exposed to 

multiple people. As a result, those participants would be more likely to be exposed to MRSA 

multiple times, possibly resulting in multiple MRSA infections. 

  A second theory must address the limitations of this study. I only included patients who 

were treated at LUMC. It is feasible that patients grouped as non-recurrent could have 

experienced recurrent MRSA infections, but received treatment at another medical facility. In 

these cases their recurrence would not have been documented by LUMC, and they would have 

been categorized as non-recurrent. It is possible there were more recurrent patients in this 

study than were documented. In addition, I only included patients with a bloodstream infection 

indicated by blood cultures positive for MRSA. It is possible that patients with non-bloodstream 

infectious could have also recurred, but I did not document those cases. Had more patients 

been included in the recurrent group, the age ranges could have been different.  

 I also found that treatment type is associated with recurrent infection. The results 

showed that 93% of recurrent patients received vancomycin monotherapy, compared to only 

62% of non-recurrent patients (p=0.009). In addition, 30% of non-recurrent patients received a 

combination therapy with vancomycin, compared to 0% of recurrent patients (p=0.012) (Table 

1a-b). These results indicate that that treatment with vancomycin monotherapy may increase 

the risk of recurrent infection. These results are not surprising. High rates of vancomycin failure 

in MRSA treatment are well documented (27, 41, 42), and these results are supported by 

findings that treatment type is associated with relapse of S. aureus bacteremia (MRSA and 

MSSA) (10, 15, 71). Chang et al. found that recurrence, primarily relapse, occurred in 9.4% of S. 

aureus bacteremias, similar to the 9.2% seen in the present study, following treatment and was 

significantly associated with vancomycin therapy (10). Similar reports showed that patients who 
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relapsed with either MSSA or MRSA were more likely to have received vancomycin therapy (15, 

71). These results suggest that vancomycin should not be the mainstay of therapy for S. aureus 

bacteremias regardless of oxacillin susceptibility.  

 Studies have suggested alternate therapies (37, 52), and these alternate therapies 

include combining vancomycin with another antibiotic, such as rifampin or gentamicin. 

Regarding combination therapy, my results show that this method of treatment may decrease 

the risk of recurrent infection. None of the recurrent patients received combination therapy, 

compared to 30% of non-recurrent patients (p=0.012). Moore et al. also showed that early 

combined therapy with an aminoglycoside or rifampin is associated with vancomycin treatment 

success (where failure was defined as recurrence, 30-day mortality and/or microbiologic failure) 

(41). Many other studies show that combination therapies can be successful against MRSA (3, 

11, 39, 46, 62), so this finding is not unexpected.  

 The remainder of the markers analyzed did not reach statistical significance. This 

contradicts some of the findings by similar studies (10, 15, 24, 41, 71) that identify specific 

comorbidities (i.e. acute renal failure) and sources of infection, vancomycin trough levels, strain 

type, persistent bacteremia and presence of indwelling foreign bodies as risk factors 

predisposing patients to vancomycin failure. Similar statistics (i.e. t-test and fisher exact test) 

were used in this and other studies (41, 71). The difference in findings could be attributed to the 

different patient populations included in each study, and the specification of MRSA versus 

MSSA. In addition, Moore et al combined recurrence, 30-day mortality, etc. into one category 

(therapy failure); while my study separated the outcomes that are considered vancomycin 

failure and looked to identify markers that could more specifically predict each outcome (41). 
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This detailed analysis led to smaller numbers of patients in each marker category and could have 

resulted in different findings.   

 I also identified markers that may predict patients at risk for prolonged bacteremia. In 

the current study 17% experienced this outcome. Patients with device related infections may be 

at a greater risk for prolonged MRSA bacteremia. The percentage of patients experiencing 

prolonged bacteremia with device related infections (54%) was significantly higher (p=0.015) 

than the non-prolonged bacteremia group (29%). Similarly, the percentage of patients with 

long-term intravenous access (such as for hemodialysis or chemotherapy) was significantly 

higher (p < 0.001) in the prolonged group (54%), than in the non-prolonged group (19%) (Table 

2a-b).  

 These results are not surprising, and are supported by multiple studies that indicate 

device related infections are associated with prolonged bacteremia (31, 43, 47, 74). The “device-

related” category used in the current study includes all devices, ranging from pacer wires and 

prosthetics to PICC lines and catheters.  Khatib et al. identified cardiovascular prosthesis and 

vancomycin treatment as risk factors for persistent S. aureus bacteremia (≥3 days) regardless of 

oxacillin susceptibility (31). The ability of biofilms to form on medical devices is well understood 

in hospitals. Additionally, some devices are easily replaced, such as catheters, while others 

require complex extraction or surgical procedures to replace such as pacer wires and prosthetic 

joints. This problem also explains the result that identifies patients with long-term intravenous 

access as being at risk for prolonged MRSA bacteremia. Some studies have mentioned the 

importance of removing devices responsible for infection, and indicate persistence is associated 

with delayed device removal (28, 43, 47, 74).The ability to identify and remove a device source 

affects the length of bacteremia. 
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 Other studies have identified endovascular sources of infection, metastatic infections, 

multiple infection sites,  treatment type and comorbidities as factors associated with persistent 

S. aureus infection (MRSA and MSSA) (31, 43, 47, 74). None of these other factors were 

significantly associated with prolonged bacteremia in the present study. This could be due to the 

smaller sample size, 28 prolonged bacteremias out of 163 patients, seen in this study. The small 

sample size split among twenty possible source and comorbidity categories (Table 2a-b), results 

in much smaller numbers in each category, which could reduce the incidence of significance. 

However, other markers in the current study reported as insignificant (p values >0.05), such as 

vancomycin trough level and treatment type, were also reported insignificant by similar studies 

(47, 74). 

 My last chart analysis looked at the differences between patients whose MRSA strains 

had a vancomycin MIC of 1 versus patients whose MRSA strain had a vancomycin MIC of 2. My 

results showed that the vancomycin MIC of the MRSA strain was not associated with recurrence 

(p=0.621) or prolonged bacteremia (p=0.462) (Table 3a-b). The only characteristic that reached 

significance was the presence of two comorbidities (p=0.22).  The results showed that 66.6% of 

patients with MRSA strains having vancomycin MICs of 2 had two comorbidities, compared to 

only 9% of patients with MRSA strains having vancomycin MICs of 1.  

  This analysis was limited in that the MIC 2 group only contained six isolates. Those 

isolates were chosen from 180 isolates because they were MRSA blood isolates that had 

confirmed MICs of 2 by both MicroScan and Etest. To account for this small number, only 12 

randomized patients of the 163 analyzed, are included in the MIC 1 comparison group. The 12 

randomized patients were chosen from the list of 157 remaining patients by selection of every 

13th patient. These data are supported by other studies stating MIC is unrelated to MRSA 
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infection outcome (21, 47, 53, 71). Other authors have shown that vancomycin MIC is related to 

S. aureus (MRSA and MSSA) infection outcome (38, 43, 73, 74). Finally, the significance of having 

2 comorbidities could have been due to coincidence as a result of the small sample population. 

The vancomycin MIC of a MRSA strain infecting an individual should not be dependent upon the 

presence of comorbidities. The issue of MRSA vancomycin MIC importance should be further 

studied with larger populations. 

 The results of the first aim suggest further research is necessary to elaborate on the 

current findings. For example, Welsh et al. found prolonged bacteremia to be associated with 

MRSA infection relapse (71). However after looking at a group of patients, some of which had 

either recurrent MRSA infection or prolonged bacteremia, I did not find any correlation between 

the two outcomes. This lack of association was also found in a similar study that looked at the 

recurrent and prolonged bacteremia outcomes using the same patient population (73). The 

differences in these results suggest that future studies regarding predictors of MRSA outcomes 

should not only look at the outcomes of MRSA infections individually, but use the same patient 

populations in those studies. The variability between patients is clear and may contribute to the 

lack of consistency between studies of this nature. Using different patient populations to study 

different MRSA outcomes could play a role in the current contradicting studies.   

 An important note of the current study is that recurrence included both relapse and 

reinfection. A relapse infection occurs when a patient’s infection is caused by the same strain of 

MRSA as the previous infection. Reinfection occurs when the patient is exposed to MRSA again 

however; it does not have to be the same strain as the previous infection. Relapse is a concern 

for patients who are in a hospital or medical setting for an extended period of time, or for 

patients who are in medical settings often, such as dialysis patients. Therefore, a study focusing 
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on the predictors of relapse infections would be beneficial to clinicians. Such a study would 

require access to the MRSA strains of multiple infections for each patient included in the study. 

In addition, strain typing would be necessary to determine if the MRSA strains from different 

infections were identical. The study could utilize chart review to analyze the difference 

characteristics seen in relapse versus non-relapse patients.  

 The results of the current study also suggest that future studies should include larger 

numbers of patients. For example, the comparison of the clinical and demographic 

characteristics between patients with and without prolonged bacteremia did not reveal ANC 

level to be significant. However, the p value was 0.052 which is approaching statistical 

significance. Had a larger patient population been used, it is possible that this characteristic 

could have demonstrated significance. In addition, the importance of the vancomycin MIC in 

terms of predicting negative MRSA outcomes should also be studied with a larger patient 

population, as the current study was limited to 18 patients. In addition, while the current study 

did not specifically address the 30-day mortality outcome, it is a concern and should be studied. 

This characteristic did not demonstrate significance in this study, but a study focusing on 30-day 

mortality as a negative outcome of MRSA infection using chart review could provide different 

results.  

 The second aim of my study was to determine if combination therapies commonly used 

at LUMC and suggested in publications demonstrate synergistic activity against MRSA. To 

answer this question I performed time-kill curve experiments on six strains of MRSA with 

vancomycin MICs of 2 confirmed by both microscan and Etest. I performed simultaneous 

experiments to determine whether there was a difference between the log growth method of 

bacterial preparation and the clinically used suspension method of bacterial preparation. Once 
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the method of bacterial preparation was decided, I tested three antibiotic combinations: 

vancomycin + gentamicin, vancomycin + rifampin, and vancomycin + cefazolin. 

 Since vancomycin affects cell-wall maintenance and growth it is more effective when 

cells are actively dividing. Therefore, the log-growth method of bacterial preparation is typically 

used in time-kill studies (3, 4, 64, 68, 69). In addition, the time-kill method of synergy testing is 

usually a more accurate predictor of a combination’s activity in vivo (3, 7, 14). However, clinical 

laboratories susceptibility testing procedure calls for preparation using the suspension method. 

The bacteria are in stationary phase at the start of the test. My results (Figure 2) indicate that 

the method of bacterial preparation does affect the results of a time-kill experiment. The 

vancomycin curve showed a much steeper decline when the log-growth method was used 

compared to the suspension method. This supports a study done by Lamp et al. that shows that 

vancomycin produces higher kill rates against exponentially growing organisms (36). The log-

growth method is used in the remainder of the time-kill experiments discussed.  

 In the vancomycin + gentamicin experiments, the combination does not demonstrate 

synergy against any of the six strains tested (Figures 3-8). Indifference is seen for all strains 

tested. However, the combination does show enhanced killing when compared to vancomycin 

alone in three of the six strains. Interestingly, one strain (strain 3) was resistant to gentamicin, 

and the combination kill rate was similar to that of vancomycin alone. This is logical in that the 

gentamicin resistance most likely results in the antibiotic having a diminished role in the 

combination. However, this result contradicts a study that uses the same antibiotic 

concentrations and demonstrates synergy regardless of gentamicin resistance (70). The reason 

for this contradiction probably lies in the variability of bacteria. Although synergy is not seen in 
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my studies, each strain does demonstrate different reactions to the same antibiotic 

combinations (i.e. vancomycin + gentamicin and vancomycin + rifampin).  

 While these results contradict studies that have shown in vitro synergy of vancomycin 

and gentamicin (26, 68, 70) they do support the use of this combination for the treatment of 

MRSA due to the enhanced killing rates (62). Although this combination is a promising 

alternative to vancomycin monotherapy for the treatment of MRSA, the dangers associated with 

it should not be overlooked. Multiple studies show a high rate of nephrotoxicity (16-26.3% of 

patients) with this combination (12, 16, 50). Current publications on this subject are 

contradictory. Tsuji et al. suggests one high dose of gentamicin in combination with vancomycin 

is enough to both achieve antibiotic synergy and decrease nephrotoxicity (62), but Cosgrove et 

al. states that an initial lose dose of gentamicin (1mg/kg every 8 hrs. for 4 days) with vancomycin 

is enough to cause nephrotoxicity (12). More research should be done in vitro and in vivo to 

clarify which doses result in the least nephrotoxicity while maintaining the most synergy. 

 The experiments testing the vancomycin + rifampin combination do not demonstrate 

synergy (Figures 9-14). The combination shows indifference against five of the six strains tested, 

and antagonism in one strain. The combination demonstrates enhanced killing when compared 

to vancomycin alone in only one strain. In addition, the combination shows diminished killing 

compared to both antibiotics individually in four of the six strains, including the antagonistic 

strain. Finally, the combination has a similar kill rate as vancomycin alone in one strain. These 

results are supported by studies that do not recommend the use of vancomycin + rifampin for 

the treatment of MRSA infections (61, 67, 75). However, there other reports that demonstrate 

synergy with this combination (4, 39, 46, 64). A possible reason for this discrepancy is the fact 

that I defined the combination as indifferent or antagonistic at 24 hours. In one study Bayer et 
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al. noted that synergy was more commonly seen at 48 hours than at 24 (4). It is possible that an 

extending the incubation time might have resulted in synergy, such as in the strain in which the 

combination kill rate paralleled that of vancomycin alone.  

 One discrepancy of these experiments is that both strains 2 and 5 were initially reported 

to have rifampin MICs >2 which would be considered resistant, but only strain 5 demonstrated 

resistance in the time-kill experiments. The experiment was done in duplicate for strain 2, and in 

both experiments the strain demonstrated susceptibility to rifampin.  The definitive answer to 

this inconsistency is not known.  

 The vancomycin + cefazolin combination demonstrates indifference with all six strains 

tested (Figures 15-20). Interestingly, the rate of killing seen in the combination parallels that of 

vancomycin for each strain, whereas the strains show different reactions to the previous 

combinations used (i.e. vancomycin + gentamicin, and vancomycin + rifampin). These results are 

supported by the Climo et al. study which showed that the combination of vancomycin and a β-

lactam is less likely to be synergistic against MRSA with a vancomycin MIC ≤2 (11). In their study 

22 MRSA strains with MICs ≤2 showed a lack of synergy (11).  This “seesaw effect” was 

demonstrated by Werth et al. as well, when their study showed ceftaroline, similar to a 

traditional β-lactam like cefazolin, was more effective against S. aureus strains with lower 

vancomycin susceptibilities (72). The six strains used in my study had MICs of 2, so the lack of 

synergy demonstrated by the vancomycin + cefazolin combination is not unusual. 

 However, these results do contradict studies reporting that β-lactam drugs, including 

cefazolin, work well in combination with vancomycin against S. aureus infections (MRSA and 

MSSA) (20, 51, 58). The concentrations used in the present study were similar to those used in 

the aforementioned studies (10µg/mL of vancomycin and 30 µg/mL of cefazolin). It is possible 
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that my results differ because the last time point is 24 hours versus 48 hours (20), so 24 hours 

may be too early to determine synergy with this combination. Another possibility is the well-

documented discrepancy between in vitro methods of synergy testing (3, 4, 26). Simon et al. 

demonstrates vancomycin + cefazolin synergy against 10 strains of S. aureus but uses the 

checkerboard method, whereas I use the time-kill method.  

 The limitations to the current study were the small sample size, the amount of drug 

concentrations that could be tested, and the fact that it is difficult to predict in vivo activity of 

combinations using in vitro methods. In addition, synergy, antagonism and indifference were 

identified at 24 hours. It is possible that identifying the combination activity at 48 hours could 

have provided different results. In addition, if more than six samples had been used more of the 

samples could have demonstrated synergy. Finally, because only one concentration was tested 

for each drug, other concentrations could have resulted in different drug interactions.  

 These results suggest more research is needed to confirm the efficacy of these 

combinations for the treatment of MRSA. Many of the current studies provide conflicting 

results, but the definitive reasoning behind this is not known. It is possible that that difference 

between in vitro methods contributes to the conflicting body of knowledge. Establishing a 

standard protocol that suggests one specific method for synergy testing could start to reconcile 

the differences between studies of this nature. Since the time-kill curve method has been shown 

to most accurately predict in vivo results (3, 7, 14) this method may be the best option for a 

standard protocol. In addition, future studies should include both in vitro and in vivo methods in 

order to confirm the results seen in vitro.     

 In conclusion, this study provided guidelines for the treatment of MRSA and how to 

predict infection outcomes. Age and method of treatment were identified as markers that may 
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predict recurrent MRSA infections (Table 1a-b), and these results supported similar studies (10, 

15, 41, 71). A device-related source of infection, presence of a long-term IV, and method of 

treatment were identified as markers that may identify patients at risk for prolonged bacteremia 

(Table 2a-b). These results were supported by multiple studies (31, 43, 47, 74). I also found that 

vancomycin MIC is not associated with the outcome of MRSA infections, which is supported by 

multiple studies (21, 47, 53, 71).  

 The second part of my study shows that combining gentamicin, rifampin or cefazolin 

with vancomycin against six strains of MRSA with vancomycin MIC of 2 is not synergistic in vitro. 

The contradicting results found in my study compared to other studies (26, 39, 58) highlight the 

need for continued research of combination therapies. However, my results did show enhanced 

killing with vancomycin +gentamicin in three strains, and vancomycin + rifampin in one strain. 

Killing with vancomycin + rifampin was worse than both antibiotics alone in four strains, and 

achieved antagonism in one of those strains. These results, although not demonstrating synergy 

may support the use vancomycin + gentamicin, but, although only showing antagonism once, do 

not support the use of vancomycin + rifampin.  

 Future directions for Aim 1 should focus on defining predictors of individual MRSA 

outcomes, including 30-day mortality which was not looked at in the current study, and using 

the same patient populations in those studies. In addition, a study focusing on the predictors of 

relapse infections would be beneficial to clinicians. Finally, the results of the current study also 

suggest that future studies should include larger numbers of patients to increase the likelihood 

of significance. Future directions for Aim 2 include testing the combinations for synergy using 

different drug concentrations, and extending the observation time to 48 hours. In addition, 

establishing a standard protocol that suggests one specific method for synergy testing could 
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start to reconcile the differences between studies of this nature. Finally, future studies should 

include both in vitro and in vivo methods in order to confirm the results seen in vitro.   
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